首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2311篇
  免费   144篇
  国内免费   16篇
化学   1811篇
晶体学   5篇
力学   48篇
数学   364篇
物理学   243篇
  2023年   23篇
  2022年   17篇
  2021年   36篇
  2020年   64篇
  2019年   68篇
  2018年   37篇
  2017年   39篇
  2016年   86篇
  2015年   102篇
  2014年   77篇
  2013年   120篇
  2012年   140篇
  2011年   144篇
  2010年   105篇
  2009年   81篇
  2008年   138篇
  2007年   134篇
  2006年   120篇
  2005年   153篇
  2004年   111篇
  2003年   88篇
  2002年   119篇
  2001年   53篇
  2000年   29篇
  1999年   41篇
  1998年   25篇
  1997年   41篇
  1996年   30篇
  1995年   32篇
  1994年   34篇
  1993年   21篇
  1992年   18篇
  1991年   9篇
  1990年   11篇
  1989年   7篇
  1988年   4篇
  1987年   11篇
  1986年   12篇
  1985年   11篇
  1984年   18篇
  1983年   7篇
  1982年   13篇
  1980年   4篇
  1979年   4篇
  1977年   9篇
  1974年   4篇
  1971年   5篇
  1970年   2篇
  1969年   2篇
  1967年   2篇
排序方式: 共有2471条查询结果,搜索用时 31 毫秒
21.
The preparation of carboxylated hyperbranched polyglycerols of narrow polydispersity was achieved by modification (78–90%) of the hydroxyl end groups via Michael addition of acrylonitrile, followed by hydrolysis. High conversion could only be achieved for low molecular weight starting materials (520 and 1,030 g mol−1). The solution properties of the resulting materials were investigated by dynamic light scattering (DLS), showing the formation of large aggregates with size depending on the pH value. After deposition on a negatively charged mica surface, the structures observed by atomic force microscope (AFM) show the coexistence of aggregates and single macromolecules. Most interesting, in the case of the lower molecular weight sample (PG 520 g mol−1), extended and ordered terrace structures were formed, which are unprecedented for hyperbranched polymers and are of interest for surface modification in general.  相似文献   
22.
The adsorption of phosphatidylcholine (PC) vesicles (30, 50, and 100 nm nominal diameters) and of dye-labeled PC vesicles (labeled with 6% Texas Red fluorophore (TR) and encapsulated carboxy fluorescein (CF)) to glass surfaces was studied by contact mode atomic force microscopy in aqueous buffer. These studies were performed in part to unravel details of the previously observed isolated rupture of dye-labeled PC vesicles on glass (Johnson, J. M.; Ha, T.; Chu, S.; Boxer, S. G. Biophys. J. 2002, 83, 3371-3379), specifically to differentiate partial rupture, that is, pore formation and leakage of entrapped dye, from full rupture to form bilayer disks. In addition, the adhesion potential of PC vesicles on glass was calculated based upon the adhesion-driven flattening of adsorbed vesicles and a newly developed theoretical model. The vesicles were found to flatten considerably upon adsorption to glass (width-to-height ratio of approximately 5), which leads to an estimate for the adhesion potential and for the critical rupture radius of 1.5 x 10(-4) J/m2 and 250 nm, respectively. Independent of vesicle size and loading with dye molecules, the adsorption of intact vesicles was observed at all concentrations below a threshold concentration, above which the formation of smooth lipid bilayers occurred. In conjunction with previous work (Johnson, J. M.; Ha, T.; Chu, S.; Boxer, S. G. Biophys. J. 2002, 83, 3371-3379), these data show that 6% TR 20 mM CF vesicles adsorb to the surface intact but undergo partial rupture in which they exchange content with the external buffer.  相似文献   
23.
The reaction of [Ni(Mes2Im)2] (1) (Mes2Im = 1,3-dimesityl-imidazolin-2-ylidene) with polyfluorinated arenes as well as mechanistic investigations concerning the insertion of 1 and [Ni(iPr2Im)2] (1ipr) (iPr2Im = 1,3-diisopropyl-imidazolin-2-ylidene) into the C–F bond of C6F6 is reported. The reaction of 1 with different fluoroaromatics leads to formation of the nickel fluoroaryl fluoride complexes trans-[Ni(Mes2Im)2(F)(ArF)] (ArF = 4-CF3-C6F42, C6F53, 2,3,5,6-C6F4N 4, 2,3,5,6-C6F4H 5, 2,3,5-C6F3H26, 3,5-C6F2H37) in fair to good yields with the exception of the formation of the pentafluorophenyl complex 3 (less than 20%). Radical species and other diamagnetic side products were detected for the reaction of 1 with C6F6, in line with a radical pathway for the C–F bond activation step using 1. The difluoride complex trans-[Ni(Mes2Im)2(F)2] (9), the bis(aryl) complex trans-[Ni(Mes2Im)2(C6F5)2] (15), the structurally characterized nickel(i) complex trans-[NiI(Mes2Im)2(C6F5)] (11) and the metal radical trans-[NiI(Mes2Im)2(F)] (12) were identified. Complex 11, and related [NiI(Mes2Im)2(2,3,5,6-C6F4H)] (13) and [NiI(Mes2Im)2(2,3,5-C6F3H2)] (14), were synthesized independently by reaction of trans-[Ni(Mes2Im)2(F)(ArF)] with PhSiH3. Simple electron transfer from 1 to C6F6 was excluded, as the redox potentials of the reaction partners do not match and [Ni(Mes2Im)2]+, which was prepared independently, was not detected. DFT calculations were performed on the insertion of [Ni(iPr2Im)2] (1ipr) and [Ni(Mes2Im)2] (1) into the C–F bond of C6F6. For 1ipr, concerted and NHC-assisted pathways were identified as having the lowest kinetic barriers, whereas for 1, a radical mechanism with fluoride abstraction and an NHC-assisted pathway are both associated with almost the same kinetic barrier.

A combined experimental and theoretical study on the mechanism of the C–F bond activation of C6F6 with [Ni(NHC)2] is provided.  相似文献   
24.
Mercury(II) Chloride and Iodide Complexes of Dithia‐ and Tetrathiacrown Ethers The complexes [(HgCl2)2((ch)230S4O6)] ( 1 ), [HgCl2(mn21S2O5)] ( 2 ), [HgCl2(ch18S2O4)] ( 3 ) and [HgI(meb12S2O2)]2[Hg2I6] ( 4 ) have been synthesized, characterized and their crystal structures were determined. In [(HgCl2)2((ch)230S4O6)] two HgCl2 units are discretely bonded within the ligand cavity of the 30‐membered dichinoxaline‐tetrathia‐30‐crown‐10 ((ch)230S4O6) forming a binuclear complex. HgCl2 forms 1 : 1 “in‐cavity” complexes with the 21‐membered maleonitrile‐dithia‐21‐crown‐7 (mn21S2O5) ligand and the 18‐membered chinoxaline‐dithia‐18‐crown‐6 (ch18S2O4) ligand, respectively. The 12‐membered 4‐methyl‐benzo‐dithia‐12‐crown‐4 (meb12S2O2) ligand gave with two equivalents HgI2 the compound [HgI(meb12S2O2)]2[Hg2I6]. In the cation [HgI(meb12S2O2)]+ meb12S2O2 forms with the cation HgI+ a half‐sandwich complex.  相似文献   
25.
The course of the reaction of alkalide K, K+(15-crown-5)21 with selected alcohols depends on the kind of alcohol and the mode of substrate delivery. In the case of methanol, potassium methoxide formed initially undergoes destruction at the excess of 1. It results in potassium oxide and methylpotassium. The latter opens the crown ether ring giving potassium tetraethylene glycoxide vinyl ether and methane. A similar course of the process is observed for propanol. Potassium glycidoxide is the main product formed in the reaction of 1 with glycidol. Its oxirane ring is opened at the excess of 1. Organopotassium alkoxides, i.e., potassium potassiomethoxide and dipotassium potassiopropane-1,2-dioxide are intermediate products of this reaction. They react then with the crown ether. Potassium methoxide, potassium enolate of acetaldehyde, dipotassium propane-1,2-dioxide and potassium tetraethylene glycoxide vinyl ether are the final products of this process.  相似文献   
26.
Band structure calculations at the level of LMTO-ASA provide insight into the electronic structure of BaV10O15 and the origin of the structural phase transition. A crystal orbital Hamiltonian population/integrated crystal orbital Hamiltonian population analysis provides evidence that the crystallographic phase transition is driven by V-V bond formation. As well, the energy bands near the Fermi level are very narrow, <1 eV, consistent with the fact that the observed insulating behavior can be due to electron localization via either Mott-Hubbard correlation and/or Anderson disorder. The partial solid solution, BaV10−xTixO15, was examined to study the effect of Ti-doping at the V sites on the structure and electronic transport properties. In spite of the non-existence of “BaTi10O15”, the limiting x=8, as indicated by a monotonic increase in the cell volume and systematic changes in properties. This limit may be due to the difficulty of stabilizing Ti2+ in this structure. For x=0.5 both the first order structural phase transition and the magnetic transition at 40 K are quenched. The samples obey the Curie-Weiss law to x=3 with nearly spin only effective moments along with θ values which range from −1090 K (x=0.5) to −1629 K (x=3). For x>3 a very large, ∼2×10−3 emu/mol, temperature independent (TIP) contribution dominates. Conductivity measurements on sintered, polycrystalline samples show semiconducting behavior for all compositions. Activation energies for Mott hopping derived from high temperature data range from ∼0.1 eV for x=0-1 and fall to a plateau of 0.06 eV for x=3-7. Low temperature data for x=3, 5 and 7 show evidence for Mott variable range hoping (VRH) with a T1/4 law and in one case between 5 and 17 K, a Efros-Shklovskii correlated hopping, T1/2 law, was seen, in sharp contrast to BaV10O15 where only the E-S law was observed up to 75 K. Seebeck coefficients are small (<35 μV/K), positive, roughly TIP and increase with increasing x up to x=5. This may point to a Heikes hopping of holes but a simple single carrier model is impossible. The compositions for x>3 are remarkable in that local moment behavior is lost, yet a metallic state is not reached. The failure of this system to be driven metallic even at such high doping levels is not fully understood but it seems clear that disorder induced carrier localization plays a major role.  相似文献   
27.
During the past two years, crystal structures of Cu- and Mo-containing carbon monoxide dehydrogenases (CODHs) and Ni- and Fe-containing CODHs have been reported. The active site of CODHs from anaerobic bacteria (cluster C) is composed of Ni, Fe, and S for which crystallographic studies of the enzymes from Carboxydothermus hydrogenoformans, Rhodospirillum rubrum, and Moorella thermoaceticarevealed structural similarities in the overall protein fold but showed substantial differences in the essential Ni coordination environment. The [Ni-4Fe-5S] cluster C in the fully catalytically competent dithionite-reduced CODH II from C. hydrogenoformans (CODHII(Ch)) at 1.6 A resolution contains a characteristic mu(2)-sulfido ligand between Ni and Fe1, resulting in a square-planar ligand arrangement with four S-ligands at the Ni ion. In contrast, the [Ni-4Fe-4S] clusters C in CO-treated CODH from R. rubrum resolved at 2.8 A and in CO-treated acetyl-CoA synthase/CODH complex from M. thermoacetica at 2.2 and 1.9 A resolution, respectively, do not contain the mu(2)-sulfido ligand between Ni and Fe1 and display dissimilar geometries at the Ni ion. The [Ni-4Fe-4S] cluster is composed of a cubane [Ni-3Fe-4S] cluster linked to a mononuclear Fe site. The described coordination geometries of the Ni ion in the [Ni-4Fe-4S] cluster of R. rubrum and M. thermoacetica deviate from the square-planar ligand geometry in the [Ni-4Fe-5S] cluster C of CODHII(Ch). In addition, the latter was converted into a [Ni-4Fe-4S] cluster under specific conditions. The objective of this study was to elucidate the relationship between the structure of cluster C in CODHII(Ch) and the functionality of the protein. We have determined the CO oxidation activity of CODHII(Ch) under different conditions of crystallization, prepared crystals of the enzyme in the presence of dithiothreitol or dithionite as reducing agents under an atmosphere of N(2) or CO, and solved the corresponding structures at 1.1 to 1.6 A resolutions. Fully active CODHII(Ch) obtained after incubation of the enzyme with dithionite under N(2) revealed the [Ni-4Fe-5S] cluster. Short treatment of the enzyme with CO in the presence of dithiothreitol resulted in a catalytically competent CODHII(Ch) with a CO-reduced [Ni-4Fe-5S] cluster, but a prolonged treatment with CO caused the loss of CO-oxidizing activity and revealed a [Ni-4Fe-4S] cluster, which did not contain a mu(2)-S. These data suggest that the [Ni-4Fe-4S] cluster of CODHII(Ch) is an inactivated decomposition product originating from the [Ni-4Fe-5S] cluster.  相似文献   
28.
In many technical processes, complex multicomponent mixtures have to be handled, for example, in reaction or separation equipment. High-resolution NMR spectroscopy is an excellent tool to study these mixtures and gain insight in their behavior in the processes. For on-line studies under process conditions, flow NMR probes can be used in a wide range of temperature and pressure. A major challenge in engineering applications of NMR spectroscopy is the need for quantitative evaluation. Flow rates, recovery times, and other parameters of the on-line NMR experiments have to be optimized for this purpose. Since it is generally prohibitive to use deuterated solvents in engineering applications, suitable techniques for field homogenization and solvent signal suppression are needed. Two examples for the application of on-line NMR spectroscopic experiments in process engineering are presented, studies on chemical equilibria and reaction kinetics of the technically important system formaldehyde-water-methanol and investigations on reactive gas absorption of CO(2) in aqueous solutions of monoethanolamine.  相似文献   
29.
Novel Neutral and Cationic Mono‐Aziridine Complexes of the Type [CpMn(CO)2Az], [CpCr(NO)2Az]+, and [(Ph3P)(CO)4ReAz]+ via CO‐, Hydride‐, and Chloride‐Elimination Reactions The monoaziridine complexes 1 — 5 are obtained by three differently induced substitution reactions. The photolytically induced CO substitution reaction of [CpMn(CO)3] with 2, 2‐dimethylaziridine leads to the neutral N‐coordinate aziridine complex [Cp(CO)2Mn{$\overline{N(H)CMe2C}$ H2}] ( 1 ). The protonation of [(Ph3P)(CO)4ReH] with CF3SO3H and consecutive treatment with 2, 2‐dimethylaziridine or 2‐ethylaziridine gives the salt‐like aziridine complexes [(Ph3P)(CO)4Re{$\overline{N(H)CMe2C}$ H2}](CF3SO3) ( 2 ) or [(Ph3P)(CO)4Re{ H2}](CF3SO3) ( 3 ) by hydride elimination reactions. The like‐wise salt‐like complexes [Cp(NO)2Cr{$\overline{N(H)CMe2C}$ H2}](BF4) ( 4 ) and [Cp(NO)2Cr{ H2}](CF3SO3) ( 5 ) are synthesized from [CpCr(NO)2Cl] by chloride elimination with AgX (X = BF4, CF3SO3) in the presence of 2, 2‐dimethylaziridine or 2‐ethylaziridine, respectively. As a result of X‐ray structure analyses, the metal atoms are trigonal pyramidally ( 1, 4, 5 ) or octahedrally ( 2, 3 , cis‐position) configurated; the intact three‐membered rings coordinate through the distorted tetrahedrally configurated N atoms. All compounds 1‐5 are stable with respect to the directed thermal alkene elimination to give the corresponding nitrene complexes; the IR, 1H‐ and 13C{1H}‐NMR, and MS spectra are reported and discussed.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号